If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2=8n+20
We move all terms to the left:
n^2-(8n+20)=0
We get rid of parentheses
n^2-8n-20=0
a = 1; b = -8; c = -20;
Δ = b2-4ac
Δ = -82-4·1·(-20)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-12}{2*1}=\frac{-4}{2} =-2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+12}{2*1}=\frac{20}{2} =10 $
| –5u=–6u+10 | | 3-2/6p=8 | | v/7=-22 | | -48=3(4n-8) | | (x+6.5)2=57.25 | | 3v=–9+4v | | 5+2/5r=10 | | 6x+18=7x-6 | | 17+2x=-3x+9-22 | | x+1=58 | | -2/3t-6=-12 | | 200=7.5x+500 | | 2x+45=3x-30 | | N/6+2n=8-n | | 5x–10=-25 | | 6s-10=1s+10 | | p-10/6=16 | | 5x–10=-25 | | 71.5=5.5u | | -4/5x+3=5 | | (x+6)(5x)=180 | | 4j-8=12+9j | | A(t)=267,000,000(.25)^10 | | 3^x-4=3^2x+5 | | 10x+4=-2(x+1) | | A(t)=267,000,000(.25)^2 | | A(t)=267,000,000(.25)^{t} | | x=72(x−3) | | y=-1/2y+8 | | 9=2x+3=27 | | 8*4^3x-5=1/32 | | 2(w-5)=0.5(4w-20) |